Structural probe of a glass-forming liquid: generalized compressibility.
نویسندگان
چکیده
We introduce a structural quantity to probe the glass transition. This quantity is a linear generalized compressibility which depends solely on the positions of the particles. We have performed a molecular dynamics simulation on a glass-forming liquid consisting of a two-component mixture of soft spheres in three dimensions. As the temperature is lowered (or as the density is increased), the generalized compressibility drops sharply at the glass transition, with the drop becoming more and more abrupt as the measurement time increases. At our longest measurement times, the drop occurs approximately at the mode coupling temperature T(C). The drop in the linear generalized compressibility occurs at the same temperature as the peak in the specific heat. By examining the inherent structure energy as a function of temperature, we find that our results are consistent with the kinetic view of the glass transition in which the system falls out of equilibrium. We find no size dependence and no evidence for a second order phase transition, though this does not exclude the possibility of a phase transition below the observed glass transition temperature. We discuss the relation between the linear generalized compressibility and the ordinary isothermal compressibility, as well as the static structure factor.
منابع مشابه
Change of Compressiblity at the Glass Transition and Prigogine-Defay Ratio in ZrTiCuNiBe Alloys
The change of the compressibility at the glass transition Tg is evaluated from pressure experiments in the liquid and the glassy state of the ZrTiCuNiBe bulk metallic glass forming system. Via the enthalpy recovery method, we derive an increase of Tg with pressure of 3.6 KyGPa. Comparing the changes of the compressibility, the specific heat capacity, and the thermal expansion coefficient at Tg,...
متن کاملResolving vibrational and structural contributions to isothermal compressibility
The well-known and general ‘‘compressibility theorem’’ for pure substances relates kT 52(] ln V/]p)N,T to a spatial integral involving the pair correlation function g . The isochoric inherent structure formalism for condensed phases separates g (2) into two fundamentally distinct contributions: a generally anharmonic vibrational part, and a structural relaxation part. Only the former determines...
متن کاملThe Effect of Substrate on Structural and Electrical Properties of Cu3N Thin Film by DC Reactive Magnetron Sputtering
The aim of this paper is to study the effect of substrate on the Cu3N thin films. At first Cu3N thin films are prepared using DC magnetron sputtering system. Then structural properties, surface roughness, and electrical resistance are studied using X-ray diffraction (XRD), the atomic force microscope (AFM) and four-point probe techniques respectively. Finally, the results are investigated and c...
متن کاملSimilarities and Differences between the Glass Forming Mechanism in Polymers and Metallic Liquids
Survey of categorization of glass forming mechanisms in liquids based on the known principles reported in the literature is given. The metallic glass-forming liquids can be divided into two types – strong (with high glass forming ability) and fragile (with low glass forming ability). While the bulk amorphous alloys formed from strong liquids do not exhibit sensitivity to low temperature relaxat...
متن کاملStructural Relaxation and Mode Coupling in a Simple Liquid: Depolarized Light Scattering in Benzene
We have measured depolarized light scattering in liquid benzene over the whole accessible temperature range and over four decades in frequency. Between 40 and 180 GHz we find a susceptibility peak due to structural relaxation. This peak shows stretching and time-temperature scaling as known from α relaxation in glass-forming materials. A simple mode-coupling model provides consistent fits of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 66 2 Pt 1 شماره
صفحات -
تاریخ انتشار 2002